3.47 \(\int \frac{(e x)^m (a+b x^2)^p (A+B x^2)}{c+d x^2} \, dx\)

Optimal. Leaf size=162 \[ \frac{B (e x)^{m+1} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{b x^2}{a}\right )}{d e (m+1)}-\frac{(e x)^{m+1} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} (B c-A d) F_1\left (\frac{m+1}{2};-p,1;\frac{m+3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{c d e (m+1)} \]

[Out]

-(((B*c - A*d)*(e*x)^(1 + m)*(a + b*x^2)^p*AppellF1[(1 + m)/2, -p, 1, (3 + m)/2, -((b*x^2)/a), -((d*x^2)/c)])/
(c*d*e*(1 + m)*(1 + (b*x^2)/a)^p)) + (B*(e*x)^(1 + m)*(a + b*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2
, -((b*x^2)/a)])/(d*e*(1 + m)*(1 + (b*x^2)/a)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.159354, antiderivative size = 162, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {584, 365, 364, 511, 510} \[ \frac{B (e x)^{m+1} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{b x^2}{a}\right )}{d e (m+1)}-\frac{(e x)^{m+1} \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} (B c-A d) F_1\left (\frac{m+1}{2};-p,1;\frac{m+3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{c d e (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[((e*x)^m*(a + b*x^2)^p*(A + B*x^2))/(c + d*x^2),x]

[Out]

-(((B*c - A*d)*(e*x)^(1 + m)*(a + b*x^2)^p*AppellF1[(1 + m)/2, -p, 1, (3 + m)/2, -((b*x^2)/a), -((d*x^2)/c)])/
(c*d*e*(1 + m)*(1 + (b*x^2)/a)^p)) + (B*(e*x)^(1 + m)*(a + b*x^2)^p*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2
, -((b*x^2)/a)])/(d*e*(1 + m)*(1 + (b*x^2)/a)^p)

Rule 584

Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Sy
mbol] :> Int[ExpandIntegrand[((g*x)^m*(a + b*x^n)^p*(e + f*x^n))/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e,
f, g, m, p}, x] && IGtQ[n, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{(e x)^m \left (a+b x^2\right )^p \left (A+B x^2\right )}{c+d x^2} \, dx &=\int \left (\frac{B (e x)^m \left (a+b x^2\right )^p}{d}+\frac{(-B c+A d) (e x)^m \left (a+b x^2\right )^p}{d \left (c+d x^2\right )}\right ) \, dx\\ &=\frac{B \int (e x)^m \left (a+b x^2\right )^p \, dx}{d}+\frac{(-B c+A d) \int \frac{(e x)^m \left (a+b x^2\right )^p}{c+d x^2} \, dx}{d}\\ &=\frac{\left (B \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int (e x)^m \left (1+\frac{b x^2}{a}\right )^p \, dx}{d}+\frac{\left ((-B c+A d) \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int \frac{(e x)^m \left (1+\frac{b x^2}{a}\right )^p}{c+d x^2} \, dx}{d}\\ &=-\frac{(B c-A d) (e x)^{1+m} \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} F_1\left (\frac{1+m}{2};-p,1;\frac{3+m}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{c d e (1+m)}+\frac{B (e x)^{1+m} \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \, _2F_1\left (\frac{1+m}{2},-p;\frac{3+m}{2};-\frac{b x^2}{a}\right )}{d e (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.195247, size = 118, normalized size = 0.73 \[ \frac{x (e x)^m \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left ((A d-B c) F_1\left (\frac{m+1}{2};-p,1;\frac{m+3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )+B c \, _2F_1\left (\frac{m+1}{2},-p;\frac{m+3}{2};-\frac{b x^2}{a}\right )\right )}{c d (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^m*(a + b*x^2)^p*(A + B*x^2))/(c + d*x^2),x]

[Out]

(x*(e*x)^m*(a + b*x^2)^p*((-(B*c) + A*d)*AppellF1[(1 + m)/2, -p, 1, (3 + m)/2, -((b*x^2)/a), -((d*x^2)/c)] + B
*c*Hypergeometric2F1[(1 + m)/2, -p, (3 + m)/2, -((b*x^2)/a)]))/(c*d*(1 + m)*(1 + (b*x^2)/a)^p)

________________________________________________________________________________________

Maple [F]  time = 0.06, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( ex \right ) ^{m} \left ( b{x}^{2}+a \right ) ^{p} \left ( B{x}^{2}+A \right ) }{d{x}^{2}+c}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(b*x^2+a)^p*(B*x^2+A)/(d*x^2+c),x)

[Out]

int((e*x)^m*(b*x^2+a)^p*(B*x^2+A)/(d*x^2+c),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )}{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{m}}{d x^{2} + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)^p*(B*x^2+A)/(d*x^2+c),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*(b*x^2 + a)^p*(e*x)^m/(d*x^2 + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{2} + A\right )}{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{m}}{d x^{2} + c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)^p*(B*x^2+A)/(d*x^2+c),x, algorithm="fricas")

[Out]

integral((B*x^2 + A)*(b*x^2 + a)^p*(e*x)^m/(d*x^2 + c), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(b*x**2+a)**p*(B*x**2+A)/(d*x**2+c),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )}{\left (b x^{2} + a\right )}^{p} \left (e x\right )^{m}}{d x^{2} + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(b*x^2+a)^p*(B*x^2+A)/(d*x^2+c),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*(b*x^2 + a)^p*(e*x)^m/(d*x^2 + c), x)